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whole range of VA in optically degraded adults [23] revealing 
that it was uniquely suited to clinical assessment in those of 
unknown prior ability or less likely to engage with other tests. 

Initial analysis suggested a different relationship between 
Step VEP and subjective VA for pediatric patients and found 
the test was occasionally unsuccessful. The aim of this study 
is primarily to derive an equation to express the Step VEP 
threshold in terms that all clinicians would understand-
subjective test VA. In addition, the reasons why tests were 
unsuccessful will be considered. 

Materials and methods
Children attending Neuro-ophthalmology clinics wore any 

optical correction they had been prescribed and had their VA 
measured using Step VEPs and a subjective test appropriate 

Introduction
Steady-state Visual Evoked Potentials (ssVEPs) have been 

used to assess Visual acuity (VA) since the 1970s [1,2], with 
either critical check size (CCS) [3] or extrapolation of the 
spatial frequency- amplitude function used to express exact 
threshold following sweep [2] or transient [4] VEP recordings. 
The automated presentation aspect of the Sweep VEP allowed 
responses to a range of stimulus sizes to be collected quickly, 
facilitating studies of the natural course of visual development 
in term-born and preterm infants [5-7]. 

SsVEP research in pediatric ophthalmology then 
diversiϐied to study patient cohorts [8-10], older normal 
volunteers [11-13] and methodology improvements [14-19]. 
However, measurement of VA in children with cortical visual 
impairment (CVI) remained a challenge (Bill Good Personal 
Communication) instigating the development of the Step VEP 
[20]. Its success in clinical pediatric VA estimation [21] was 
attributed to a short test duration compared to transient VEPS 
[22] and an algorithm that minimized the presentation of 
stimuli away from an individual’s spatial resolution threshold 
[20]. Moreover, the relationship between Step VEP VA with 
gold standard subjective tests was consistent across the 

Abstract 

Steady-state VEPs, have been used to estimate visual acuity since the 1970s and allow 
responses to a range of stimulus sizes to be collected rapidly- with particular utility in infants. 
However, the assessment of children with cortical visual impairment is a bigger challenge 
that lead to the development of the Step VEP. Its initial evaluation revealed that accuracy and 
precision were poorer for pediatric patients than for optically degraded normal adults and that it 
was not necessarily successful in every child. 

Statistical models generated the equations: VAO = 0.56 VAStep (r2 = 0.75, F = 60.93, 
p = 0.000) and VAPL = 0.45 VAStep (r2 = 0.82, F = 156.85, p = 0.000), supported by a recent 
a systematic review of VA comparisons showing that recognition VA (optotypes) agrees more 
closely than discrimination VA (PL) with VEP VA. 

In combination, Step VEPS and subjective tests allowed complete assessment in 96% of 
patients, with incomplete Step VEPS much more likely to be partially successful than not, and 
more likely to be partially successful than incomplete subjective tests. This supports the rationale 
that Step VEPs maintain attention by limiting the time spent stimulating away from an individual’s 
threshold of spatial resolution. For the small number of patients in whom VA cannot be estimated, 
alternative stimuli and methods of presentation are proposed. 
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to their age and ability. All parameters of the Step VEP 
methodology have been published previously [idem], and 
they met or exceeded the contemporaneous ISCEV technical 
standards [24]. The etiology of visual impairment (VI) was 
categorized according to the anatomical location of primary 
damage, or suspicion of Functional Visual Loss (FVL) [25]. For 
all tests success was expressed dichotomously. 

For the subgroup of patients succeeding at both tests, and 
without FVL, Multiple regression modeling (MRM) was used 
to investigate the inϐluence of age, subjective VA, subjective 
test modality, and aetiological group on the relationship 
between subjective and Step VEP VA. More speciϐically, the 
subjective tests were Cardiff Cards, Keeler Cards, Snellen 
Charts, and Sheridan-Gardiner Optotypes. Multiple regression 
required variables to be normally distributed, assumes a linear 
relationship between independent and dependent variables, 
assumes the data was measured reliably and without error, 
and that homoscedasticity (consistent variance of errors 
over the whole range) is present [26]. The modeling process 
comprised of univariate tests to identify individual inϐluences 
followed by a multivariate regression including inϐluential 
parameters and their interactions with each other.

The data from all successful subjective tests were entered 
in a logistic regression model (LRM) of inϐluences on Step VEP 
success, and similarly, data from successful Step VEPs were 
used to model subjective test success. Logistic regression 
requires that independent variables are not collinear [27], 
and interactions between variables were also considered [28].

Bland-Altman analysis (BA-A) is a quantiϐication of the 
agreement between two methods of measuring the same thing 
[29] and requires the mean VA for an individual assessed by 
two different methods to be plotted against the difference 
between the two methods in that individual. Results across 
a group are expressed in terms of the accuracy (the mean 
difference between two measurements), precision (the width 
of the conϐidence limits around the mean difference), and bias 
(the deviation of the regression line from horizontal) in the 
relationship between VA measurement methods. According 
to our published methodology [23], in the absence of bias, a 
simple linear regression equation can be derived to describe 
the relationship between tests. 

Results
Data was collected for 100 children aged one month to 

thirteen years. 85 children completed each test, but not the 
same 85 children. 59 children successfully completed both 
Step VEP and subjective VA assessments and were judged to 
have organic vision loss. Age, VA, and etiological grouping did 
not inϐluence the VA relationship between the two methods. 
However, subjective test modality was a factor, and so the 
dataset was stratiϐied accordingly and reanalyzed. The 
following two equations were generated: VAO = 0.56 VAStep 
(r2 = 0.75, F = 60.93, p = 0.000) VAPL = 0.45 VAStep (r

2 = 0.82, 
F = 156.85, p = 0.000). BA-A conϐirmed that the relationship 

between tests was consistent over the range of VA in each 
group. During LRM, poor VA was the only limit found on 
the success of Step VEPs, with no speciϐic limit identiϐied for 
subjective testing. 

Discussion
The high success rate of Step VEPs [20,21] created a 

large dataset for the derivation of equations expressing 
outcome in terms of subjective VA allowing clear clinical 
interpretation. Our group with mixed ability and a range of 
ages and VA created a dynamic range with which to perform 
regression analyses to identify inϐluences on success and the 
VA relationship between methods.. 

Comparisons of subjective and VEP VA have been 
published periodically, but rarely verify the degree of success 
of either assessment- those that the author is aware of are 
included in Table 1. Including underestimations of VA from 
partially complete tests in analyses will increase variation 
in the relationship between test results. Excluding them, 
however, should be explicit and allows the test success rate to 
be quantiϐied and interpreted. This parsing of the data means 
the clinician can be sure that any VA disparity results from 
anatomical and physiological factors.

Previously published work [idem] infers that attempting 
both Step VEP and subjective VA assessment in pediatric 
patients improves the chance of success over just one test. 
Also, unsuccessful Step VEPS were likely to be partially 
successful allowing ‘VA better than ... ‘ to be expressed. This 
high partial success rate for Step VEPs compared to subjective 
tests supports the rationale that the technique maintains 
attention by limiting the time spent stimulating too far above 
and below an individual’s threshold of spatial resolution. 
However, the dynamic nature of the stimulus may also play 
a part. Even so, these advantages did not help the least able 
children who may also have difϐiculties with higher processing 
and motor function. Alternative methods of presenting the 
stimulus should address this. 

A Scanning Laser Ophthalmoscope (SLO) has been used 
to present VEP stimuli [30] and circumvents any refractive 
error. However, persuading children who are unable to 
engage with Step VEPs to sit completely still and hold their 
heads in the same position for minutes may not be realistic. 
In recent years, headsets and glasses have been employed 
very effectively to direct the stimulus onto the retina [31,32]. 
Where the poor vision is known to be secondary to CVI, lower 
luminance can facilitate testing [33] and a recumbent position 
and background music have positively inϐluenced completion 
[34].

A larger LRM with additional patient factors could 
provide more insight into the limits on subjective test 
success. Considering the different visual pathways following 
monochromatic stimulation of the striate cortex (V1): the 
Magnocellular (M) pathway responds to temporal luminance 
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contrast, while parvocellular (P) ϐibers respond to spatial 
luminance contrast [3]. Static subjective tests generate an 
exclusively P response which abates at a smalller check size 
than the M response, and so it is unsurprising that no outcome 
is achieved in profoundly impaired patients. In the same 
patients, VEP responses may be present via the M pathway. 
The contributors to a VEP should be identiϐiable by latency 
and morphology but will be obscured by higher processing 
problems associated with CVI. 

In this study, a range of different subjective tests was 
available to the orthoptist and the VA relationship with Step 
VEPs was much more variable than the Adult study employing 
exclusively Glasgow Acuity Cards (GACs). Optotypes (O) 
such as GACs and Snellen charts (SC) are an identiϐication 
task, whereas Preferential Looking cards (PL) represent 
a discrimination task. A recent review of VA comparisons 
showed that recognition VA agreed more closely with VEP VA 
than discrimination VA, with smaller inter-and intra-subject 
variation [35], explaining why the regression coefϐicient is 
closer to one (perfect agreement) for optotypes than PL cards 
in this study. 

Processing beyond the primary V1/V2 response occurs 
via M, P, and Koniocellular (K) pathways which then input 
the dorsal and ventral streams in different proportions [36]. 
These streams go on to modulate occipital electrical activity. A 
range of new technologies used alongside the ssVEP [37] will 
enhance our understanding of the relationship between the 
stimulus, the brain’s response to it, and the VEP recording. The 
2016 study by Marcar and Jäncke used a dartboard stimulus 
as opposed to checkerboard reversals and they advocate 
the study of the phasic and tonic aspects of its VEP spatial 
frequency (SF) response, rather than separate temporal 
luminance (TL) and spatial luminance (SL) response functions 
[38]. 

The presence and morphology of evoked responses to 
orientation-reversal (OR) and direction reversal (DR) stimuli 
have been reported to show differences between those with 
and without perinatal brain injuries [39] and so automated 
presentation of these stimuli could provide further clinical 
speciϐicity.. Also, a set of expanding and contracting concentric 
rings caused less fatigue during ssVEP VA assessment than 
other stimuli and is worth considering in children whose tests 
are incomplete [40].

Other recent methodological developments include the 
use of Gaussian functions during extrapolation of the sweep 
VEP spatial frequency-amplitude function [41], ISCEV’s 
publication of an extended protocol for estimation of VA 
using VEPs [42] and using the difference between VA scores 
in an individual as a marker of CVI [43]. The latter idea 
requires further mathematical consideration, while a protocol 
provides a useful starting point for clinicians and researchers 
applying this technology for the ϐirst time, so long as it isn’t so 
restrictive it deters the development of new tests. 

Conclusion
By attempting both subjective tests and Step VEPs, most 

children attending neuro-ophthalmology clinics can now 
have their VA measured. Where Step VEPs are the only VA 
assessment a child can complete, equations have been derived 
to express the results in terms familiar to all clinicians. The 
MRM, LRM and BA-A described here could be attempted 
on other large datasets of VEP and subjective VA in speciϐic 
cohorts.
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Table 1: Reports on the degrees of Success of Visual Acuity Estimation including VEPS.
First Author Year Clinical Group Age range

Sokol [a] 1983 Paediatric Patients Four months to ten years
Orel-Bixler [b] 1989 Multiply Handicapped Three to 33 years

Bane [c] 1992 Moderate to Severe Visual Impairment Four months to nine years
Mackie [d] 1995 Multiply Handicapped Five months to 16 years

Saunders [e] 1995 Rett Syndrome One to 24 years
Mackay [f] 2003 Neuro-Ophthalmological One month to 13 years
Costa [g] 2004 Cerebral Palsy Six months to four years

Ghasia [h] 2009 Cerebral Palsy One to 19 years
Costa [i] 2012 Cerebral Palsy Six months to four years

Mackay [21] 2012 Neuro-ophthalmological One month to 13 years
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g. Costa MF, Saloma˜o SR, Berezovsky A. Relationship between vision and motor impairment in children with spastic cerebral palsy: new evidence from electrophysiology. 
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