Research Article

Step VEP visual acuity in a pediatric neuro-ophthalmological cohort

Alison M Mackay*

Published: 12 June, 2022 | Volume 6 - Issue 1 | Pages: 026-030

Steady-state VEPs, have been used to estimate visual acuity since the 1970s and allow responses to a range of stimulus sizes to be collected rapidly- with particular utility in infants. However, the assessment of children with cortical visual impairment is a bigger challenge that lead to the development of the Step VEP. Its initial evaluation revealed that accuracy and precision were poorer for pediatric patients than for optically degraded normal adults and that it was not necessarily successful in every child. 
Statistical models generated the equations: VAO = 0.56 VAStep (r2 = 0.75, F = 60.93, 
p = 0.000) and VAPL = 0.45 VAStep (r2 = 0.82, F = 156.85, p = 0.000), supported by a recent a systematic review of VA comparisons showing that recognition VA (optotypes) agrees more closely than discrimination VA (PL) with VEP VA. 
In combination, Step VEPS and subjective tests allowed complete assessment in 96% of patients, with incomplete Step VEPS much more likely to be partially successful than not, and more likely to be partially successful than incomplete subjective tests. This supports the rationale that Step VEPs maintain attention by limiting the time spent stimulating away from an individual’s threshold of spatial resolution. For the small number of patients in whom VA cannot be estimated, alternative stimuli and methods of presentation are proposed. 

Read Full Article HTML DOI: 10.29328/journal.ijceo.1001046 Cite this Article Read Full Article PDF


Children; Cortical visual impairment; Neuro-ophthalmology; ssVEP; Visual acuity


  1. Regan D. Speedy assessment of visual acuity in amblyopia by the evoked potential method. Ophthalmologica. 1977;175(3):159-64. doi: 10.1159/000308649. PMID: 896144.
  2. Tyler CW, Apkarian P, Levi DM, Nakayama K. Rapid assessment of visual function: an electronic sweep technique for the pattern visual evoked potential. Invest Ophthalmol Vis Sci. 1979 Jul;18(7):703-13. PMID: 447469.
  3. Tobimatsu S, Tomoda H, Kato M. Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion. J Neurol Sci. 1995 Dec;134(1-2):73-82. doi: 10.1016/0022-510x(95)00222-x. PMID: 8747847.
  4. Sokol S. Measurement of infant visual acuity from pattern reversal evoked potentials. Vision Res. 1978;18(1):33-9. doi: 10.1016/0042-6989(78)90074-3. PMID: 664274.
  5. Norcia AM, Tyler CW. Spatial frequency sweep VEP: visual acuity during the first year of life. Vision Res. 1985;25(10):1399-408. doi: 10.1016/0042-6989(85)90217-2. PMID: 4090273.
  6. Norcia AM, Tyler CW. Infant VEP acuity measurements: analysis of individual differences and measurement error. Electroencephalogr Clin Neurophysiol. 1985 Nov;61(5):359-69. doi: 10.1016/0013-4694(85)91026-0. PMID: 2412787.
  7. Norcia AM, Tyler CW, Piecuch R, Clyman R, Grobstein J. Visual acuity development in normal and abnormal preterm human infants. J Pediatr Ophthalmol Strabismus. 1987 Mar-Apr;24(2):70-4. doi: 10.3928/0191-3913-19870301-05. PMID: 3585654.
  8. John FM, Bromham NR, Woodhouse JM, Candy TR. Spatial vision deficits in infants and children with Down syndrome. Invest Ophthalmol Vis Sci. 2004 May;45(5):1566-72. doi: 10.1167/iovs.03-0951. PMID: 15111616.
  9. Good WV. Development of a quantitative method to measure vision in children with chronic cortical visual impairment. Trans Am Ophthalmol Soc. 2001;99:253-69. PMID: 11797314; PMCID: PMC1359017.
  10. Hou C, Good WV, Norcia AM. Detection of Amblyopia Using Sweep VEP Vernier and Grating Acuity. Invest Ophthalmol Vis Sci. 2018 Mar 1;59(3):1435-1442. doi: 10.1167/iovs.17-23021. PMID: 29625467; PMCID: PMC5858252.
  11. Sokol S, Moskowitz A, McCormack G. Infant VEP and preferential looking acuity measured with phase alternating gratings. Invest Ophthalmol Vis Sci. 1992 Oct;33(11):3156-61. PMID: 1399421.
  12. Skoczenski AM, Norcia AM. Development of VEP Vernier acuity and grating acuity in human infants. Invest Ophthalmol Vis Sci. 1999 Sep;40(10):2411-7. PMID: 10476810.
  13. Salomão SR, Ejzenbaum F, Berezovsky A, Sacai PY, Pereira JM. Age norms for monocular grating acuity measured by sweep-VEP in the first three years of age. Arq Bras Oftalmol. 2008 Jul-Aug;71(4):475-9. doi: 10.1590/s0004-27492008000400002. PMID: 18797653.
  14. Victor JD, Mast J. A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol. 1991 May;78(5):378-88. doi: 10.1016/0013-4694(91)90099-p. Erratum in: Electroencephalogr Clin Neurophysiol 1992 Oct;83(4):270. PMID: 1711456.
  15. Bradnam MS, Evans AL, Montgomery DM, Keating D, Damato BE, Cluckie A, Allan D. A personal computer-based visual evoked potential stimulus and recording system. Doc Ophthalmol. 1994;86(1):81-93. doi: 10.1007/BF01224630. PMID: 7956688.
  16. Tang Y, Norcia AM. An adaptive filter for steady-state evoked responses. Electroencephalogr Clin Neurophysiol. 1995 May;96(3):268-77. doi: 10.1016/0168-5597(94)00309-3. PMID: 7750452.
  17. Bach M, Meigen T. Do's and don'ts in Fourier analysis of steady-state potentials. Doc Ophthalmol. 1999;99(1):69-82. doi: 10.1023/a:1002648202420. PMID: 10947010.
  18. Mackay AM, Bradnam MS, Hamilton R. Rapid detection of threshold VEPs. Clin Neurophysiol. 2003 Jun;114(6):1009-20. doi: 10.1016/s1388-2457(03)00078-6. PMID: 12804669.
  19. Mackay AM, Hamilton R, Bradnam MS. Faster and more sensitive VEP recording in children. Doc Ophthalmol. 2003 Nov;107(3):251-9. doi: 10.1023/b:doop.0000005334.70304.c7. PMID: 14711157.
  20. Mackay AM. Estimating Children’s Visual Acuity using Steady State VEPs. PhD Thesis. University of Glasgow. 2003.
  21. Mackay AM. The Step VEP has a Consistent VA Relationship with Psychophysics for all VA, Age, and Aetiology and Increases the Completion Rate of Pediatric VA Assessment to 96%. IOVS 2012; 53: ARVO E-abstract 5720.
  22. Mackay AM, Hamilton R, Bradnam MS. Faster Acuity Assessment in Children- A New, Electrophysiological Test. IOVS. 2002; 43: ARVO E-abstract 1811.
  23. Mackay AM, Bradnam MS, Hamilton R, Elliot AT, Dutton GN. Real-time rapid acuity assessment using VEPs: development and validation of the step VEP technique. Invest Ophthalmol Vis Sci. 2008 Jan;49(1):438-41. doi: 10.1167/iovs.06-0944. PMID: 18172123.
  24. Brigell M, Bach M, Barber C, Moskowitz A, Robson J; Calibration Standard Committee of the International Society for Clinical Electrophysiology of Vision. Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. Doc Ophthalmol. 2003 Sep;107(2):185-93. doi: 10.1023/a:1026244901657. PMID: 14661909.
  25. Bruce BB, Newman NJ. Functional visual loss. Neurol Clin. 2010 Aug;28(3):789-802. doi: 10.1016/j.ncl.2010.03.012. PMID: 20638000; PMCID: PMC2907364.
  26. Osborne JW. Waters E. Four assumptions of Multiple Regression that Researchers Should Always Test. Practical Assessment, Research and Evaluation. 2002; 8(2).
  27. Midi H. Sarkar SK, Rana S. Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics. 2010; 13 (3): 253-267.
  28. Jaccard J. Interaction effects in logistic regression. SAGE Publications, Inc.
  29. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. The Lancet. 1986; 327 (8476):307-310.
  30. Le Gargasson JF, Rigaudiere F, Guez JE, Gaudric A, Grall Y. Contribution of scanning laser ophthalmoscopy to the functional investigation of subjects with macular holes. Doc Ophthalmol. 1994;86(3):227-38. doi: 10.1007/BF01203546. PMID: 7813374.
  31. Terracciano R, Sanginario A, Barbero S, Putignano D, Canavese L, Demarchi D. Pattern-Reversal Visual Evoked Potential on Smart Glasses. IEEE J Biomed Health Inform. 2020 Jan;24(1):226-234. doi: 10.1109/JBHI.2019.2899774. Epub 2019 Feb 15. PMID: 30794193.
  32. Terracciano R, Sanginario A, Puleo L, Demarchi D. A novel system for measuring visual potentials evoked by passive head-mounted display stimulators. Doc Ophthalmol. 2022 Apr;144(2):125-135. doi: 10.1007/s10633-021-09856-6. Epub 2021 Oct 18. PMID: 34661850.
  33. Good WV, Hou C. Sweep visual evoked potential grating acuity thresholds paradoxically improve in low-luminance conditions in children with cortical visual impairment. Invest Ophthalmol Vis Sci. 2006 Jul;47(7):3220-4. doi: 10.1167/iovs.05-1252. PMID: 16799070.
  34. Karanjia R, Brunet DG, ten Hove MW. Optimization of visual evoked potential (VEP) recording systems. Can J Neurol Sci. 2009 Jan;36(1):89-92. doi: 10.1017/s0317167100006375. PMID: 19294895.
  35. Hamilton R, Bach M, Heinrich SP, Hoffmann MB, Odom JV, McCulloch DL, Thompson DA. VEP estimation of visual acuity: a systematic review. Doc Ophthalmol. 2021 Feb;142(1):25-74. doi: 10.1007/s10633-020-09770-3. Epub 2020 Jun 2. PMID: 32488810; PMCID: PMC7907051.
  36. Skottun BC. The magnocellular system versus the dorsal stream. Front Hum Neurosci. 2014 Oct 6;8:786. doi: 10.3389/fnhum.2014.00786. PMID: 25339887; PMCID: PMC4186266.
  37. Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol. 2010 Apr;90(4):418-38. doi: 10.1016/j.pneurobio.2009.11.005. Epub 2009 Dec 4. PMID: 19963032.
  38. Marcar VL, Jäncke L. To see or not to see; the ability of the magno- and parvocellular response to manifest itself in the VEP determines its appearance to a pattern reversing and pattern onset stimulus. Brain Behav. 2016 Aug 25;6(11):e00552. doi: 10.1002/brb3.552. PMID: 27843702; PMCID: PMC5102647.
  39. Braddick O, Atkinson J, Wattam-Bell J. VERP and brain imaging for identifying levels of visual dorsal and ventral stream function in typical and preterm infants. Prog Brain Res. 2011;189:95-111. doi: 10.1016/B978-0-444-53884-0.00020-8. PMID: 21489385.
  40. Zheng X, Xu G, Zhang K, Liang R, Yan W, Tian P, Jia Y, Zhang S, Du C. Assessment of Human Visual Acuity Using Visual Evoked Potential: A Review. Sensors (Basel). 2020 Sep 28;20(19):5542. doi: 10.3390/s20195542. PMID: 32998208; PMCID: PMC7582995.
  41. Strasser T, Nasser F, Haerer G. Objective Assessment of Visual Acuity using Visual Evoked Potentials-the VISUS VEP revised. Invest. Ophthalmol Vis Sci. 2014; 55(13):
  42. Hamilton R, Bach M, Heinrich SP. et al. ISCEV extended protocol for VEP methods of estimation of Visual Acuity. Doc Ophthalmol 2021; 142:17-24.
  43. Raja S, Emadi BS, Gaier ED, Gise RA, Fulton AB, Heidary G. Evaluation of the Relationship Between Preferential Looking Testing and Visual Evoked Potentials as a Biomarker of Cerebral Visual Impairment. Front Hum Neurosci. 2021 Oct 27;15:769259. doi: 10.3389/fnhum.2021.769259. PMID: 34776912; PMCID: PMC8578861.

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?