Side-Port Incision Patency and Influencing Factors in Femtosecond Laser-Assisted Cataract Surgery
Main Article Content
Abstract
Purpose: To analyze the patency rate of side-port incisions in femtosecond laser-assisted cataract surgery (FLACS) and to assess the impact of limbus detection quality, arcus lipoides, and limbal vessels extent on incision patency in a prospective clinical unmasked single-centre study.
Methods: A total of 159 eyes from 123 patients undergoing FLACS with the FEMTO LDV Z8 laser were included. Side-port incision patency, limbus detection quality, arcus lipoides, and limbal vessels extent were evaluated per corneal quadrant using a standardized protocol.
Results: A total of 130 eyes and 259 paracenteses were submitted to analysis. Notably, side-port incision patency was achieved in 99.2% of cases, of which 2.7% showed bridges. In only 0.8% a blade was necessary to open the incisions. Quality of limbus detection, arcus lipoides, and limbal vessels did not significantly affect the patency rate (p > 0.05).
Conclusion: FLACS using the FEMTO LDV Z8 achieves exceptional side-port incision patency, establishing its reliability as an automated alternative to manual incisions.
Article Details
Copyright (c) 2025 Legler K, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Binder PS. Femtosecond applications for anterior segment surgery. Eye Contact Lens. 2010;36:282-5. Available from: https://doi.org/10.1097/icl.0b013e3181ee2d11
Dick B, Gerste RD, Schultz T. Femtosecond laser surgery in ophthalmology. Thieme; 2018. Available from: https://www.thieme-connect.de/products/ebooks/book/10.1055/b-005-143342
Gray B, Binder PS, Huang LC, Hill J, Salvador-Silva M, Gwon A. Penetrating and intrastromal corneal arcuate incisions in rabbit and human cadaver eyes: manual diamond blade and femtosecond laser-created incisions. Eye Contact Lens. 2016;42:267-73. Available from: https://doi.org/10.1097/icl.0000000000000204
Mastropasqua L, Toto L, Mastropasqua A, Vecchiarino L, Mastropasqua R, Pedrotti E. Femtosecond laser versus manual clear corneal incision in cataract surgery. J Refract Surg. 2014;30:27-33. Available from: https://doi.org/10.3928/1081597x-20131217-03
Lee YW, Cho KS, Hyon JY, Han SB. Application of femtosecond laser in challenging cataract cases. Asia Pac J Ophthalmol (Phila). 2023;12:477-85. Available from: https://doi.org/10.1097/apo.0000000000000627
Naranjo-Tackman R. How a femtosecond laser increases safety and precision in cataract surgery? Curr Opin Ophthalmol. 2011;22:53-7. Available from: https://doi.org/10.1097/icu.0b013e3283415026
Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol. 2009;147:189-97.e2. Available from: https://doi.org/10.1016/j.ajo.2008.08.026
Gavris MM, Belicioiu R, Olteanu I, Horge I. The advantages of femtosecond laser-assisted cataract surgery. Rom J Ophthalmol. 2015;59:38-42. Available from: https://pubmed.ncbi.nlm.nih.gov/27373114/
Hill JE, Binder PS, Huang LC. Leak-free clear corneal incisions in human cadaver tissue: femtosecond laser-created multiplanar incisions. Eye Contact Lens. 2017;43:257-61. Available from: https://doi.org/10.1097/icl.0000000000000262
Song C, Baharozian CJ, Hatch KM, Talamo JH. Assessment of surgeon experience with femtosecond laser-assisted cataract surgery. Clin Ophthalmol. 2018;12:1373-7. Available from: https://doi.org/10.2147/opth.s171743
Anders N, Pham DT, Liekfeld A, Pham DT, Wollensak J. [Factors modifying postoperative astigmatism after no-stitch cataract surgery]. Ophthalmologe. 1997;94:6-11.
Pham DT, Wollensak J. ["No-stitch" cataract surgery as a routine procedure. Technique and experiences]. Klin Monbl Augenheilkd. 1992;200:639-43. Available from: https://doi.org/10.1055/s-2008-1045848
Boden KT, Schlosser R, Reipen L, Seitz B, Januschowski K, Szurman P. The impact of limbus detection, arcus lipoides, and limbal vessels on the primary patency of clear cornea incisions in femtosecond laser-assisted cataract surgery. Acta Ophthalmol. 2021;99:e943-8. Available from: https://doi.org/10.1111/aos.14705
Al Mahmood AM, Al-Swailem SA, Behrens A. Clear corneal incision in cataract surgery. Middle East Afr J Ophthalmol. 2014;21:25-31. Available from: https://doi.org/10.4103/0974-9233.124084
Wallin T, Parker J, Jin Y, Kefalopoulos G, Olson RJ. Cohort study of 27 cases of endophthalmitis at a single institution. J Cataract Refract Surg. 2005;31:735-41. Available from: https://doi.org/10.1016/j.jcrs.2004.10.057
Grewal DS, Basti S. Comparison of morphologic features of clear corneal incisions created with a femtosecond laser or a keratome. J Cataract Refract Surg. 2014;40:521-30. Available from: https://doi.org/10.1016/j.jcrs.2013.11.028
Ferreira TB, Ribeiro FJ, Pinheiro J, Ribeiro P, O'Neill JG. Comparison of surgically induced astigmatism and morphologic features resulting from femtosecond laser and manual clear corneal incisions for cataract surgery. J Refract Surg. 2018;34:322-9. Available from: https://doi.org/10.3928/1081597x-20180301-01
Wang L, Zhao L, Yang X, Zhang Y, Liao D, Wang J. Comparison of outcomes after phacoemulsification with two different corneal incision distances anterior to the limbus. J Ophthalmol. 2019;2019:1760742. Available from: https://doi.org/10.1155/2019/1760742
Ernest PH, Lavery KT, Kiessling LA. Relative strength of scleral, corneal, and clear corneal incisions constructed in cadaver eyes. J Cataract Refract Surg. 1994;20:626-9. Available from: https://doi.org/10.1016/s0886-3350(13)80651-7
Febbraro JL, Wang L, Borasio E, Richiardi L, Khan HN, Saad A, et al. Astigmatic equivalence of 2.2-mm and 1.8-mm superior clear corneal cataract incision. Graefes Arch Clin Exp Ophthalmol. 2015;253:261-5. Available from: https://doi.org/10.1007/s00417-014-2854-5
Hayashi K, Sato T, Yoshida M, Yoshimura K. Corneal shape changes of the total and posterior cornea after temporal versus nasal clear corneal incision cataract surgery. Br J Ophthalmol. 2019;103:181-5. Available from: https://doi.org/10.1136/bjophthalmol-2017-311710
Masket S, Belani S. Proper wound construction to prevent short-term ocular hypotony after clear corneal incision cataract surgery. J Cataract Refract Surg. 2007;33:383-6. Available from: https://doi.org/10.1016/j.jcrs.2006.11.006
Nikose AS, Saha D, Laddha PM, Patil M. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison. Clin Ophthalmol. 2018;12:65-70. Available from: https://doi.org/10.2147/opth.s149709
Yu YB, Zhu YN, Wang W, Zhang YD, Yu YH, Yao K. A comparable study of clinical and optical outcomes after 1.8, 2.0 mm microcoaxial and 3.0 mm coaxial cataract surgery. Int J Ophthalmol. 2016;9:399-405. Available from: https://doi.org/10.18240/ijo.2016.03.13
Sun H, Fritz A, Dröge G, Neuhann T, Bille JF. Femtosecond-laser-assisted cataract surgery (FLACS). In: Bille JF, editor. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics [Internet]. Cham (CH): Springer; 2019. Chapter 14. Available from: https://doi.org/10.1007/978-3-030-16638-0_14
Mariacher S, Ebner M, Seuthe AM, Januschowski K, Ivanescu C, Opitz N, et al. Femtosecond laser-assisted cataract surgery: first clinical results with special regard to central corneal thickness, endothelial cell count, and aqueous flare levels. J Cataract Refract Surg. 2016;42:1151-6. Available from: https://doi.org/10.1016/j.jcrs.2016.06.024
Lin HY, Chuang YJ, Lin PJ. Surgical outcomes with high and low pulse energy femtosecond laser systems for cataract surgery. Sci Rep. 2021;11:9525. Available from: https://doi.org/10.1038/s41598-021-89046-1