Treatment of Retinal Pigment Epithelial Detachment

Main Article Content

Ayse Gul Kocak Altintas
Cagri Ilhan

Abstract

Anatomical separation of the retinal pigment epithelium from the Bruch membrane is defined as retinal pigment epithelial detachment (PED) andit is classified as drusenoid, serous, and vascularized. Vascularized PED is mostly associated with choroidal neovascularmembrane due to age-related macular degeneration and the risk of vision loss is high in this situation. Studies show that all of baseline values including BCVA, PED height, subretinal fluid, central macular thickness, PED volume, vertical dimension, presence of coincident macular pathology, reflectivity and morphology on optical coherence tomography have prognostic importance. Current treatment protocols mainly based on intravitreal injection of anti-vascular endothelial growth factor (VEGF).Even the bevacizumab was the first anti-VEGF that was used for treatment in PED, there are several reports show the insufficiency of bevacizumab. In treatment-naïve eyes, both of ranibizumab and aflibercepthave similar effect in vascularized PED. In treatment-resistant eyes, high dose bevacizumab or switching therapy of anti-VEGF procedures can be effective when considering of all cases, aflibercept seems more effective than other options.We aimed in this manuscript, to give a general information about different characteristics of PEDs and to investigate the treatment strategies in the light of current literature.

Article Details

Altintas, A. G. K., & Ilhan, C. (2018). Treatment of Retinal Pigment Epithelial Detachment. International Journal of Clinical and Experimental Ophthalmology, 2(1), 008–014. https://doi.org/10.29328/journal.ijceo.1001013
Review Articles

Copyright (c) 2018 Altintas AGK, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Mrejen S, Sarraf D, Mukkamala SK, Freund KB. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013; 33: 1735-1762. Ref: https://goo.gl/3PMfj4

Sarks JP, Sarks SH, Killingsworth MC. Evolution of soft drusen in age-related macular degeneration. Eye (Lond). 1994; 8: 269-283. Ref.: https://goo.gl/KyUxNF

Schmitz-Valckenberg S, Fleckenstein M, Scholl HP, Holz FG. Fundus autofluorescence and progression of age-related macular degeneration. Surv Ophthalmol. 2009; 54: 96-117. Ref.: https://goo.gl/KXVte5

Arnold JJ, Quaranta M, Soubrane G, Sarks SH, Coscas G. Indocyanine green angiography of drusen. Am J Ophthalmol. 1997; 124: 344-356. Ref.: https://goo.gl/HUxH5g

Casswell AG, Kohen D, Bird AC. Retinal pigment epithelial detachments in the elderly: classification and outcome. Br J Ophthalmol. 1985; 69: 397-403. Ref.: https://goo.gl/KhUZFh

Hartnett ME, Weiter JJ, Garsd A, Jalkh AE. Classification of retinal pigment epithelial detachments associated with drusen. Graefes Arch Clin Exp Ophthalmol. 1992; 230: 11-19. Ref.: https://goo.gl/Wtr1o6

Lommatzsch A, Heimes B, Gutfleisch M, Spital G, Zeimer M, et al. Serous pigment epithelial detachment in age-related macular degeneration: comparison of different treatments. Eye (Lond). 2009; 23: 2163-2168. Ref.: https://goo.gl/26chZh

Laatikainen L, Hoffren M. Long-term follow-up study of non- senile detachment of the retinal pigment epithelium. Eur J Ophthalmol. 1991; 1: 79-84. Ref.: https://goo.gl/SkBViT

Karadimas P, Bouzas EA. Fundus auto fluorescence imaging in serous and drusenoid pigment epithelial detachments associated with age-related macular degeneration. Am J Ophthalmol. 2005; 140: 1163-1165. Ref.: https://goo.gl/8FpL2E

Spaide RF. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol. 2009; 147: 644-652. Ref.: https://goo.gl/D28pK5

Subfoveal neovascular lesions age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study Group. Arch Ophthalmol. 1991; 109: 1242-1257. Ref.: https://goo.gl/eQi13W

Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA. Digital indocyanine green videoangiography and choroidal neovascularization. Retina.1992; 12: 191-223. Ref.: https://goo.gl/YUCeuh

Gass JD. Drusen and disciform macular detachment and degeneration. Arch Ophthalmol.1973; 90: 206-217. Ref.: https://goo.gl/pTuYBs

Chang LK, Flaxel CJ, Lauer AK, Sarraf D. RPE tears after pegaptanib treatment in age-related macular degeneration. Retina. 2007; 27: 857-863. Ref.: https://goo.gl/jd1oRd

Lam D, Semoun O, Blanco-Garavito R, Jung C, Nguyen DT, et al. Wrinkled vascularized retinal pigment epithelium detachment prognosis after intravitreal anti-VEGF therapy. Retina. 2017. Ref.: https://goo.gl/fccRT5

Baba T, Kitahashi M, Kubota-Taniai M, Oshitari T, Yamamoto S. Two-year course of subfoveal pigment epithelial detachment in eyes with age-related macular degeneration and visual acuity better than 20/40. Ophthalmologica. 2012; 228: 102-109. Ref.: https://goo.gl/pTohtv

Brancato R, Introini U, Bolognesi G, Pacelli G, Trabucchi G, et al. ICGA-guided laser photocoagulation of occult choroidal neovascularization in age-related macular degeneration. Indocyanine green angiography. Retina. 2000; 20: 134-142. Ref.: https://goo.gl/66A4Zw

Yüksel H, Türkcü FM, Sahin A, Sahin M, Cinar Y, et al.One year results of anti-VEGF treatment in pigment epithelial detachment secondary to macular degeneration. Arq Bras Oftalmol. 2013; 76: 209-211. Ref.: https://goo.gl/cZewgP

Ach T, Hoeh AE, Ruppenstein M, Kretz FT, Dithmar S. Intravitreal bevacizumab in vascular pigment epithelium detachment as a result of subfoveal occult choroidal neovascularization in age-related macular degeneration. Retina. 2010; 30: 1420-1425. Ref.: https://goo.gl/ZDXuuq

Lee DK, Kim SH, You YS, Kwon OW. High Dose Intravitreal Bevacizumab for Refractory Pigment Epithelial Detachment in Age-related Macular Degeneration. Korean J Ophthalmol. 2016; 30: 265-271. Ref.: https://goo.gl/rDrx7e

Chevreaud O, Oubraham H, Cohen SY, Jung C, Blanco-Garavito R, et al. Ranibizumab for vascularized pigment epithelial detachment: 1-year anatomic and functional results. Graefes Arch Clin Exp Ophthalmol. 2017; 255: 743-751. Ref.: https://goo.gl/4fJCBL

Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012; 119: 2537-2548. Ref.: https://goo.gl/c8ibsz

Vaze A, Nguyen V, Daien V, Arnold JJ, Young SH, et al. Ranibizumab and aflibercept for the treatment of pigment epithelial detachment in neovascular age-related macular degeneration: Data from an Observational Study. Retina. 2017. Ref.: https://goo.gl/CbU1hP

Balaskas K, Karampelas M, Horani M, Hotu O, Keane P, et al. Quantitative analysis of pigment epithelial detachment response to different anti-vascular endothelial growth factor agents in wet age-related macular degeneration. Retina. 2017; 37: 1297-1304. Ref.: https://goo.gl/gGCLwD

Kumar N, Marsiglia M, Mrejen S, Fung AT, Slakter J, et al. Visual and anatomical outcomes of intravitreal aflibercept in eyes with persistent sub-foveal fluid despite previous treatments with ranibizumab in patients with neovascula rage-related macular degeneration. Retina. 2013; 33: 1605-1612. Ref.: https://goo.gl/1YiS5U

Chan CK, Jain A, Sadda S, Varshney N. Optical coherence tomographic and visual results at six months after transitioning to aflibercept for patients on prior ranibizumab or bevacizumab treatment for exudative age-relatedmacular degeneration (an AmericanOphthalmologicalSocietythesis). Trans Am Ophthalmol Soc. 2014; 112: 160-198. Ref.: https://goo.gl/he65fj

deMassougnes S, Dirani A, Mantel I. Good visual outcome at 1 year in neovascular age-related macular degeneration with pigment epithelium detachment: Factors Influencing the Treatment Response. Retina. 2018. 38: 717-724. Ref.: https://goo.gl/yCFMw7

Broadhead GK, Hong T, Zhu M, Li H, Schlub TE. Response of pigment epithelial detachments to intravitreal aflibercept among patients with treatment-resistant neovascular age-related macular degeneration. Retina. 2015; 35: 975-981. Ref.: https://goo.gl/ejVYW2

He L, Silva RA, Moshfeghi DM, Blumenkranz MS, Leng T. Aflibercept for the treatment of retinal pigment epithelial detachments. Retina. 2016; 36: 492-498. Ref.: https://goo.gl/TsWakB

Zinkernagel MS, Wolf S, Ebneter A. Fluctuations in pigment epithelial detachment and retinal fluid using a bimonthly treatment regimen with aflibercept for neovascular age-related macular degeneration. Ophthalmologica. 2016; 235: 42-48. Ref.: https://goo.gl/gXKB5D

Chen X, Al-Sheikh M, Chan CK, Hariri AH, Abraham P, et al. Type 1 versus type 3 neovascularization in pigment epithelial detachments associated with age-related macular degeneration after anti-vascular endothelial growth factor therapy: A Prospective Study. Retina. 2016; 36: 50-64. Ref.: https://goo.gl/xreoH3

Kim K, Kim ES, Kim Y, Yang JH, Yu SY, et al. Outcome of intravitreal aflibercept for refractory pigment epithelial detachment with or without subretinal fluid and secondary to age-related macular degeneration. Retina. 2017. Ref.: https://goo.gl/ZaLU51

Treumer F, Wienand S, Purtskhvanidze K, Roider J, Hillenkamp J. The role of pigment epithelial detachment in AMD withs submacular hemorrhage treated with vitrectomy and subretinal co-application of rtPAand anti-VEGF. Graefes Arch Clin Exp Ophthalmol. 2017; 255: 1115-1123. Ref.: https://goo.gl/EWmZRB

Doguizi S, Ozdek S. Pigment epithelial tears associated with anti-VEGF therapy: incidence, long-term visual outcome, and relationship with pigment epithelial detachment in age-related macular degeneration. Retina. 2014; 34: 1156-1162. Ref.: https://goo.gl/bBdxkX

Chiang A, Chang LK, Yu F, Sarraf D. Predictors of anti-VEGF-associated retinal pigment epithelial tear using FA and OCT analysis. Retina. 2008; 28: 1265-1269. Ref.: https://goo.gl/BwhsNe